하나의 평면에 대해서 2가지의 평면공식이 도출되는데, 이 2가지 평면의 공식에 대해서.. 선과 평면에 대한 교차점을 구하는 방법에 대해서 논의해 보겠습니다. 이 자료는 1991년에 작성된 Paul Bourke(http://local.wasp.uwa.edu.au)님의 글을 좀더 알기 쉽게 풀어 쓴 글입니다.
방법 1.
점 P는 평면 위의 임이의 점이고, N은 법선벡터이며 P3는 이미 알고 있는 평면상의 점이라고 하면 평면의 공식은 우리가 고등학교때 배운 평면의 방정식의 형태인, 다음처럼 기술됩니다.
평면을 수학적으로 기술했으니, 이제는 선에 대한 공식을 알아볼 차례입니다. 이제 앞에서 언급한 점 P를 평면과 선과의 교차점이라고 하면, 점 P는 선에 대한 점입니다. 그리고 선이 지나는 이미 알고 있는 2개의 점을 각각 P1, P2라고 하면 선에 대한 공식은 수학적으로 다음과 같습니다.
위에서 u는 선에 대한 기울기 값이 되겠지요. 이제.. 평면의 공식에서 P에 선의 공식을 대입할 수 있는 형태입니다. 대입해 보면 아래와 같습니다.
위의 식을 u에 대해서 전개해 보면 아래와 같은 공식이 됩니다.
이제 u값을 구했으니.. 이 u값을 선에 대한 공식에 대입하여 교차점 P를 구할 수 있습니다. 다음은 주의할 점입니다.
- 만약 u에 대한 식에서 분모가 0이면, 주어진 선과 평면의 법선은 수직이라는 의미입니다. 즉, 이말은 평면과 선은 서로 만나지 않는다는 의미입니다.
- 교점 P가 P1과 P2 사이에 있는지 검사해야한다면, u값이 0~1사이의 값인지 확인해 보면 됩니다.
방법 2.
이제 평면에 대한 공식으로, 고등학교때 배운 또 다른 형태는 다음과 같습니다.
(x,y,z)는 평면상의 점이고 (A,B,C)는 평면에 대한 법선벡터이며 D는 이 법선벡터의 길이값입니다. 이 형태의 평면방정식은 임이의 점에 대해서 위의 공식에 대입하여 그 값이 양수인경우 평면을 경계로 법선벡터가 향하는 부분에 존재하는 것이고, 음수인경우는 그 반대방향에 존재하는 것을 간단히 판단할 수 있습니다.
P1(x1,y1,z1)과 P2(x2,y2,z2)를 지나는 선에 대한 공식을 방법1에서의 선에 대한 공식… 다시 언급해 보면 아래와 같습니다.
위의 선 공식을 방법2에서의 평면의 공식에 대입해 보면 다음과 같은 형태로 전개됩니다.
위의 식을 u에 대해서 정리해 보면…
이제 u를 구했으니, 방법1과 마찬가지로 교점을 구할 수 있습니다. 이 방법에 대해 주의할 점은 방법 1과 동일합니다.
기말고사 공부하면서 검색해서 왔는데요
정말 정리 잘 해놓으셨네요 보고 나니깐 평명 방정식이 왜 있는지 이제야 알겠네요 ㅎㅎ 감사.
필레몬님, 시험 기간이군요? 도움이 되셨다니 좋습니다.
시험 잘 보시고, 좋은 결과 있으시면 좋겠습니다.
감사합니다~
아니 어떻게 이렇게 깔끔하게 정리하시나요.. 대단하십니다.
독학 중인데 많은 도움 얻고 갑니다. 정말 감사합니다.
u는 임의의 실수가 되지 않나요?