최적 가중치값을 얻기 위한 경사하강법을 Python 코드로 이해하기

이 글은 텐서플로나 파이토치와 같은 같은 딥러닝 라이브러리의 기반을 이해하거나, 직접 개발하고자 할때 참고할 만한 글로 작성한 코드는 이해를 위해 나이브하게 작성했다 . 아래는 이 글에서 사용할 모델로 단순화를 위해 은닉층은 없고 입력층과 출력층만이 존재한다.

입력값 x와 해당 입력값에 대한 라벨값 t는 다음과 같다.

x = np.array([20.1, 32.2])
t = np.array([0, 0, 1])

데이터가 단일 항목인데, 실제는 그 개수가 상당이 많을 것이다. 가중치 W는 입력값의 특성개수가 2개이고 츨력값의 분류수가 3개이므로 2×3 행렬이며, 초기값은 아래처럼 난수로 잡는다.

W = np.random.randn(2, 3)

모델에 대한 입력 데이터가 정해졌으므로, 초기에 난수로 정한 가중치값을 보정하기 위한 방법인 경사하강법에 대한 함수인 gradient를 다음처럼 사용할 수 있다.

dW = gradient(x, t, W)
print(dW)

gradient 함수는 인자로 입력값과 라벨값 그리고 보정할 가중치값이 저장된 행렬을 받으며, 가중치값들을 보정할 경사도(미분값)를 가중치 행렬과 동일한 크기로 반환한다. 먼저 손실함수 loss는 다음과 같다.

def predict(input, weight):
    return np.dot(input, weight)

def softmax(input):
    input = input - np.max(input)
    return np.exp(input) / np.sum(np.exp(input))

def cee(activated, label):
    label = label.argmax(axis=0)
    result = -np.sum(np.log(activated[label] + 1e-7))

    return result    

def loss(input, label, weight):
    output = predict(input, weight)
    activated = softmax(output)
    loss = cee(activated, label)

    return loss

손실함수는 교차 엔트로피 오차(Cross Entropy Error, CEE) 함수를 사용했으며, 출력층에 대한 활성화 함수는 Softmax를 사용한 것을 알 수 있다. 이제 gradient 함수는 아래와 같다.

def gradient(input, label, weight):
    h = 1e-4
    grad = np.zeros_like(weight)
    
    it = np.nditer(weight, flags=['multi_index'])
    while not it.finished:
        idx = it.multi_index
        v = weight[idx]

        weight[idx] = v + h
        fxh1 = loss(input, label, weight)
        
        weight[idx] = v - h 
        fxh2 = loss(input, label, weight)
        
        grad[idx] = (fxh1 - fxh2) / (2*h)
        
        weight[idx] = v

        it.iternext()   
        
    return grad

가중치에 대한 W의 각 요소별로 편미분을 기울기 방향을 구하고 있다. 이 기울기 방향으로 일정한 길이만큼 가중치값을 이동해 주는 것을 반복하면 최소의 손실값을 갖는 가중치들의 모음을 얻을 수 있게 된다. 기울기 방향을 구하기 위한 방법으로 편미분에 대한 수치해석 기법을 활용했으나, 실제 텐서플로우나 파이토치 등과 같은 머신러닝 라이브러리에서는 역전파기법을 활용한다.

PCA를 이용한 도형에 대한 주축 구하기

PCA는 주성분분석(Principal Component Analysis)로 차원감소에 활용됩니다. 예를들어 2차원에 분포된 데이터를 1차원의 어떤 축에 대해 투영했을때, 투영되어진 데이터의 분포(데이터간의 거리)가 가장 큰 축, 바로 이 축이 주성분이며, 이를 찾는 방법입니다. GIS에서도 이 PCA를 이용하는 경우가 있는데, 이해를 위해 Python 언어로 설명해 봅니다.

Python 언어로 정의된 다음과 같은 좌표가 있다.

X = np.array([
    [150,  60, -30, -20, -120, -90],
    [ 70, 180,  90,  50, -30,   70]
], dtype=np.float64)

X = X.transpose()

X축에 대한 좌표값과 Y축에 대한 좌표값 각각으로 구성되다가 전치되어 X, Y 좌표가 쌍을 맺는 형태이다. 위의 좌표를 화면에 표시해 보기 위해 이미지 버퍼를 생성하고 표시한다. 아래처럼..

dst = np.full((512,512,3), (255, 255, 255), dtype= np.uint8)

rows, cols, _ = dst.shape
centerX = cols // 2
centerY = rows // 2

cv2.line(dst, (0,256), (cols-1, 256), (0, 0, 0))
cv2.line(dst, (256,0), (256,rows), (0, 0, 0))

FLIP_Y = lambda y: rows - 1 - y

for k in range(X.shape[0]):
    x, y = X[k,:]
    cx = int(x+centerX)
    cy = int(y+centerY)
    cy = FLIP_Y(cy)
    cv2.circle(dst, (cx,cy), radius=5, color=(0,0,255), thickness=-1)
    
cv2.imshow('dst', dst)               
cv2.waitKey()    
cv2.destroyAllWindows()

결과는 아래와 같다.

1번 코드에서 좌표값을 고려해서 충분한 크기(512×512)의 버퍼를 준비한다. 7, 8번 코드는 화면의 정중앙을 원점으로 XY축을 그려주는 것이다. Y축에 대해서는 수학적인 축방향과 컴퓨터 그래픽 화면의 축방향이 반대이므로 10번 람다 함수가 필요하다. 12번 코드에 표시된 반복문을 통해 각 좌표에 대해 빨간색 원으로 표시한다. (꼭 필요한 부분은 아니지만) 입력 데이터를 시각화했으므로 이제 주축을 계산해보자.

cov, mean = cv2.calcCovarMatrix(X, mean=None, flags=cv2.COVAR_NORMAL+cv2.COVAR_ROWS)
ret, eVals, eVects = cv2.eigen(cov)

def ptsEigenVector(eVal, eVect):
    scale = np.sqrt(eVal)
    
    x1 = scale*eVect[0]
    y1 = scale*eVect[1]

    x2, y2 = -x1, -y1

    x1 += mean[0,0] + centerX
    y1 += mean[0,1] + centerY
    x2 += mean[0,0] + centerX
    y2 += mean[0,1] + centerY
    
    y1 = FLIP_Y(y1)
    y2 = FLIP_Y(y2)

    return x1, y1, x2, y2

1번 코드의 cov, mean은 각각 X축과 Y축을 구성하는 각각의 공분산 그리고 좌표값의 평균이다. 2번 코드의 eVals와 eVects는 공분산 cov에 대한 고유값과 고유벡터이다. 함수 ptsEigenVector는 주축 계산을 위한 함수이다. 이 함수의 쓰임은 아래와 같다.

x1x, y1x, x2x, y2x = ptsEigenVector(eVals[0], eVects[0])
x1y, y1y, x2y, y2y = ptsEigenVector(eVals[1], eVects[1])

x1x, y1x, x2x, y2x는 X축에 대한 주축 선분의 시작점과 끝점이고, x1y, y1y, x2y, y2y는 Y축에 대한 주축의 시작점과 끝점이다. 이제 결과를 시각화 해보자.

cv2.line(dst, (x1x, y1x), (x2x, y2x), (255, 0, 0), 1)
cv2.line(dst, (x1y, y1y), (x2y, y2y), (255, 0, 0), 1)

cv2.imshow('dst', dst)               
cv2.waitKey()    
cv2.destroyAllWindows()

결과는 아래와 같다.

scikit-learn의 SVM을 통한 분류(Classification)

SVM(Support Vector Machine)은 데이터 분석 중 분류에 이용되며 지도학습 방식의 모델입니다. SVM에 대한 좋은 구현체는 사이킷-런(scikit-learn)인데, 이를 이용해 SVM에 대한 내용을 정리해 봅니다.

먼저 학습을 위한 입력 데이터가 필요한데, scikit-learn은 데이터 분류를 목적으로 데이터를 생성해 주는 make_blobs라는 함수를 제공합니다. 이를 이용해 아래처럼 2종류의 총 40개의 샘플 데이터를 생성합니다.

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets.samples_generator import make_blobs

X, y = make_blobs(n_samples=40, centers=2, random_state=20)

위에서 생성한 데이터 샘플을 SVM으로 학습시키는 코드는 다음과 같습니다.

clf = svm.SVC(kernel='linear')
clf.fit(X, y)

SVM은 선형 분류와 비선형 분류를 지원하는데, 그 중 선형 모델을 위해 kernel을 linear로 지정하였습니다. 비선형에 대한 kernel로는 rbf와 poly 등이 있습니다.

학습된 SVM 모델을 통해 데이터 (3,4)를 분류하는 코드는 다음과 같습니다.

newData = [[3,4]]
print(clf.predict(newData))

다음은 시각화입니다. 샘플 데이터와 초평면(Hyper-Plane), 지지벡터(Support Vector)를 그래프에 표시하는 코드는 다음과 같습니다.

# 샘플 데이터 표현
plt.scatter(X[:,0], X[:,1], c=y, s=30, cmap=plt.cm.Paired)

# 초평면(Hyper-Plane) 표현
ax = plt.gca()

xlim = ax.get_xlim()
ylim = ax.get_ylim()

xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = clf.decision_function(xy).reshape(XX.shape)

ax.contour(XX, YY, Z, colors='k', levels=[-1,0,1], alpha=0.5, linestyles=['--', '-', '--'])

# 지지벡터(Support Vector) 표현
ax.scatter(clf.support_vectors_[:,0], clf.support_vectors_[:,1], s=60, facecolors='r')

plt.show()

결과는 다음과 같습니다. 빨간색 포인트가 지지벡터이고, 진한 회색선이 초명편입니다.

다음은 비선형 SVM로써 kernel이 rbf인 결과 그래프입니다.

이미지 Dataset에 대한 평균과 표준편차 구하기

사진 이미지는 촬영된 주변 환경에 따라 그 명도나 채도 등이 서로 다릅니다. 이 사진 이미지를 대상으로 하는 머신러닝을 수행하기 전에 이미지들을 동일한 환경으로 맞춰주는 후처리로 전체 이미지에 대한 화소값의 평균과 표준편차를 구해 이 값을 이미지들에 일괄적으로 적용합니다.

아래의 코드는 PyTorch에서 Dataset에 대한 평균과 표준편차를 구하기 위한 코드입니다.

transform = transforms.Compose([
    transforms.ToTensor()
])

dataset = torchvision.datasets.CIFAR10(root='./data/cifar10', train=True, download=True, transform=transform) 

mean = dataset.train_data.mean(axis=(0,1,2))
std = dataset.train_data.std(axis=(0,1,2))

mean = mean / 255
std = std / 255

실제 mean과 std의 값은 각각 [0.4913, 0.4821, 0.4465], [0.2470, 0.2434, 0.2615]와 유사한데, 실제 CIFAR10 데이터를 이용한 딥러닝 예제 코드에서 상수값으로 입력되는 바로 그 값입니다. 실제로 이 평균과 편차는 다음 코드 예시를 통해 적용됩니다.

train_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean, std)
])

train_dataset = torchvision.datasets.CIFAR10(root='./data/cifar10', train=True, download=True, transform=train_transform)