OpenGL Shader – 23

GLSL 예제 – 툰쉐이딩 마지막 장.. (4/4)
원본 : http://www.lighthouse3d.com/opengl/glsl/index.php?toon3

툰쉐이딩을 끝내기 전에 한가지 더 살펴보자 : lightDir 변수를 사용하는 대신에 OpenGL 빛을 사용한 것. OpenGL에서 빛을 하나 정의하고 이 빛의 방향을 쉐이더에서 사용하는 방법이다. 주의: glEnable을 사용해서 빛을 활성화할 필요가 없는데, OpenGL에서 이 빛을 실제로 사용하지는 않을 것이기 때문이다.

우리는 OpenGL에서 첫번째 빛(GL_LIGHT0)이 Directional 빛이라고 가정하겠다.

GLSL은 OpenGL 상태의 일부에 접근할 수 있는데, 바로 빛과 같은 속성에 접근할 수 있다. GLSL은 빛의 속성에 대한 C언어 형식의 구조체를 정의하고 있는데 각 빛에 대한 속성을 정의하기 위한 배열로 존재한다.

struct gl_LightSourceParameters {
    vec4 ambient;
    vec4 diffuse;
    vec4 specular;
    vec4 position;
};

uniform gl_LightSourceParamters gl_LightSource[gl_MaxLights];

위의 구조체와 변수를 이용해서 버텍스 쉐이더에서 빛의 방향을 얻어낼 수 있는데, 구조체의 필드중에 position을 이용하면 된다. 여기서 다시 우리는 OpenGL 어플리케이션에서 빛의 방향 벡터가 정규화되었다고 가장하겠다.

OpenGL은 스펙상 빛의 위치가 지정되면 이 위치 좌표가 자동으로 눈 공간 좌표계(eye space coordinate), 예를 들어서 카메라 좌표계로 바뀐다. 우리는 좌표체계가 바뀌어도 빛의 위치가 정규화된 상태로 유지된다고 가정할 수 있다. 이 가정은 모델뷰해열의 좌측상단의 3×3 부분의 행렬이 직교일때 옳다(만약 gluLookAt함수를 사용하고, 어플리케이션에서 좌표계의 크기조정을 하지 않았다면 확실히 옳다).

우리는 법선벡터를 눈 공간 좌표계(카메라 좌표계)로 변환해야 하며, 빛의 방향벡터와 법선벡터 사이의 각을 계산하기 위해 내적 계산을 해야 한다.

법선벡터를 카메라 좌표계로  변환하기 위해서는 미리 정의된 Uniform  변수인 gl_NormalMatrix를 사용한다. 이 행렬 변수는 모델뷰 매트릭스의 좌상단의 3×3 부분의 역행렬의 전치 행렬이다. 우리는 하나의 버텍스 마다 법선 변환을 수행할 것인데 아래의 코드가 바로 이 변환에 대한 코드이다.

varying vec3 normal;

void main()
{
    normal = gl_NormalMatrix * gl_Normal;
    gl_Position = ftransform();
}

아래의 코드처럼 프레그먼트 쉐이더에서 빛의 위치를 얻어와 빛의 밝기값을 계산한다.

varying vec3 normal;

void main()
{
    float intensity;
    vec3 color;
    vec3 n = normalize(normal);

    intensity = dot(vec3(gl_LightSource[0].position, n);

    if(intensity > 0.95)
        color = vec4(1.0, 0.5, 0.5, 1.0);
    else if(intensity > 0.5)
        color = vec4(0.6, 0.3, 0.3, 1.0);
    else if(intensity > 0.25)
        color = vec4(0.4, 0.2, 0.2, 1.0);
    else
        color = vec4(0.2, 0.1, 0.1, 1.0);

    gl_FragColor = color;
}

최종 소스 코드는 다음을 통해 다운로드 받길 바란다.1264150041.zip1096160345.zip

OpenGL Shader – 22

GLSL 예제 – 툰쉐이딩 3(총4장)
원문 : http://www.lighthouse3d.com/opengl/glsl/index.php?toon2

GLSL은 OpenGL의 상태의 일부에 접근할 수 있다. 이 강좌에서는 OpenGL 어플리케이션에서 glColor로 설정된 색을 읽는 방법에 대해서 살펴보겠다.

GLSL은 현재의 색상값을 가지고 있는 Attribute 변수가 있다. 이 센션에서는, 프레그먼트 마다 툰 쉐이딩 효과를 적용할 것이다. 이렇게 하기 위해서는, 프레그먼트 마다에 대한 법선벡터값을 읽어야 한다. 버텍스 쉐이더는 Varying 변수에 법선벡터를 기록할 필요만 있는 반면, 프레그먼트 쉐이더는 보간된 법선벡터를 읽어야한다.

프레그먼트 쉐이더에서 즉시 빛의 밝기값이 계산되므로 버텍스 쉐이더의 코드는 간단해진다. lightDir은 Uniform 변수인데, 이 변수는 프레그먼트 쉐이더로 옮겨지게되며, 버텍스 쉐이더에서는 더 이상 사용되지 않는다.

varying vec3 normal;

void main()
{
    normal = gl_Normal;
    gl_Position = ftransform();
}

프레그먼트 쉐이더에서, Uniform 변수인 lightDir를 선언할 필요가 있는데, 이 변수가 빛의 밝기값을 계산하는데 사용된다. 보간된 법선벡터를 받기 위해 Varying 변수도 정의해야한다. 아래 프레그먼트 쉐이더의 코드 내용이다.

uniform vec3 lightDir;
varying vec3 normal;

void main()
{
    float intensity;
    vec4 color;

    intensity = dot(lightDir, normal);

    if(intensity > 0.95)
        color = vec4(1.0, 0.5, 0.5, 1.0);
    if(intensity > 0.5)
        color = vec4(0.6, 0.3, 0.3, 1.0);
    if(intensity > 0,25)
        color = vec4(0.4, 0.2, 0.2, 1.0);
    else
        color = vec4(0.2, 0.1, 0.1, 1.0);

    gl_FragColor = color;
}

결과는 다음과 같다.
이전이랑 결과가 똑같네? =_=;; 뭐여….?

이전 장에서 살펴본 것과 이번 장의 것의 차이점을 좀더 살펴보자. 첫번째 것은 빛의 밝기를 버텍스 쉐이더에서 계산을 했고 프레그먼트 쉐이더에서 보간된 값을 사용했다. 두번째 것은 내적을 계산한 프레그먼트 쉐이더를 위해 버텍스쉐이더에서 법선벡터를 보간했다. 보간과 내적 연산은 둘다 선형 연산이므로 내적연산을 수행한 다음에 보간 연산을 수행하나 보간 연산을 수행하고 선형 연산을 수행하나 결과는 동일하다.

그럼 도데체 프레그먼트 쉐이더에서 내적을 위한 법선벡터의 보간의 사용에 뭐가 문제가 있다는 것인가!! 법선벡터가 옳바른 방향을 가지고 있을지라도 법선벡터가 잘못인데, 이유는 법선벡터가 정확히 단위벡터의 길이(1)이 아니기 때문이다.

We know that the direction is right because we assumed that the normals that arrived at the vertex shader were normalized, and interpolating normalized vectors, provides a vector with the correct direction. However the length is wrong in the general case because interpolating normalized normals only yields a unit length vector if the normals being interpolated have the same direction, which is highly unlikely in smooth surfaces. 보다 자세한 내용은 이후에 Normalization 이슈에서 다시 살펴보겠다.

버텍스 쉐이더로부터 프레그먼트 쉐이더로 빛의 밝기계산을 옮긴 주요 이유는 프레그먼트에 대해 적당한 법선벡터를 사용해 계산하기 위함이다. 방향은 옳지만 단위벡터가 아닌 법선 벡터를 가지고 있다. 단위 벡터가 아닌 문제를 해결하려면, 프레그먼트 쉐이더에서 법선벡터를 정규화해주면 된다. 다음의 코드가 이런 문제를 해결한 완벽한 튠쉐이더이다.

uniform vec3 lightDir;
varying vec3 normal;
	
void main()
{
	float intensity;
	vec4 color;

	intensity = dot(lightDir, normalize(normal));
		
	if (intensity > 0.95)
		color = vec4(1.0,0.5,0.5,1.0);
	else if (intensity > 0.5)
		color = vec4(0.6,0.3,0.3,1.0);
	else if (intensity > 0.25)
		color = vec4(0.4,0.2,0.2,1.0);
	else
		color = vec4(0.2,0.1,0.1,1.0);
	
	gl_FragColor = color;
}

위 코드에 대한 결과는 다음과 같다. 훨씬 멋있어 졌당~ 하지만 여전이 완벽하지 않다. 그것은 모서리 부분이 계단처럼 나타나는 문제인데, 이 문제는 이 장의 범위를 벗어난다.
다음 장에서는 쉐이더를 통해 다양한 광원에 대해 살펴보겠다.