잠재벡터(Latent) z의 공간분포 시각화(Visualization)

의미적으로 같은 성질의 데이터들을 공간상에 분포시켜 가시화해 본다면, 같은 의미를 가지는 데이터들은 공간 위치상으로 한곳에 모여있을 것입니다. 이렇게 데이터를 공간상에 분포시켜 놓을 수 있다면 해석 결과로써의 데이터가 얼마나 잘 해석되었는지를 시각화할 수 있고, 새로운 데이터에 대한 공간상의 위치를 통해 어떤 성질군에 해당하는지를 시각적으로 쉽게 파악할 수 있습니다.

그러나 문제는 사람이 인지하는 공간은 2차원 또는 3차원이라는 점이고, 데이터는 이보다 더 큰 차원을 갖는다는 것이 일반적입니다. 만약 3차원보다 큰 다 차원의 데이터에 대해 어떤 유사도 값이 있다고 할때, 이 유사도와 비슷한 2차원 또는 3차원의 데이터를 얻을 수 있도록 학습시킨다면 아무리 큰 차원의 데이터라도 공간상에 분포시켜 가시화할 수 있게 됩니다. 바로 이런 경우에 활용할 수 있는 매우 강력한 기술이 t-SNE입니다. SNE는 Stochastic Neighbor Embedding의 약자이고 t는 정규분포와 유사한 그래프를 나타냅니다. 아래는 t 분포의 한 예에 대한 이미지입니다.

이 t-SNE를 이용하여 GAN이나 AutoEncoder 등에서 얻어지는 잠재벡터 z를 2차원 공간상에 분포시켜보는 내용을 구체적으로 살펴보겠습니다. Python의 Scikit-Learn 라이브러리에서 제공하는 t-SNE API를 이용하고, 잠재벡터 z는 아래의 AutoEncoder 포스팅에서 소개한 신경망에서 생성된 잠재벡터 값을 이용하겠습니다.

AutoEncoder

이 글에서 제시하는 최종 결과를 얻기 위해서는 위의 글을 통해 먼저 코드를 전제로 합니다. 먼저 위의 글의 소스코드에서 작성한 AutoEncdoer 신경망을 학습 한 이후에 다음의 코드를 통해 잠재 벡터 z를 얻어올 수 있습니다.

inp = transform(test_data.data.numpy().reshape(-1,28,28))
inp = inp.transpose(0,1)
inp = inp.reshape(-1,1,28,28).to(device)

z = model.encoder(inp)
z = z.detach().cpu().numpy()
y = test_data.targets.numpy()

AutoEncoder를 이해하고 있는 사람이라면 잠재벡터 z는 Encoder가 생성한 데이터라는 것을 알고 있을 것입니다. 이제 이렇게 생성한 z를 2차원 공간상에 시각화하는 위한 t-SNE 학습은 다음 코드와 같습니다.

from sklearn.manifold import TSNE
import numpy as np

tsne = TSNE(n_components=2, verbose=1, n_iter=300, perplexity=5)
tsne_v = tsne.fit_transform(z[:6000])

데이터의 양이 너무 많으면 학습 시간이 많이 소요되므로 일단 6000개만 이용해 학습하였습니다. 학습이 완료되면 z를 2차원 상에 각 z에 해당되는 원래 이미지와 함께 공간상에 시각해 보면 다음과 같습니다.

결과를 보면, 신발은 신발끼리 바지는 바지끼리.. 윗옷은 윗옷끼리 서로 그룹핑되어 분포하고 있는 것을 볼 수 있습니다. 좀더 세밀하게 관찰해보면 같은 신발이라도 신발의 세부 분류 항목으로 다시 그룹핑된다는 것입니다. 이는 AutoEncoder의 Encoder가 생성한 잠재벡터의 품질에 따라 그 성과가 달라질 것이고, 이러한 잠재벡터의 공간상 분포 가시화는 t-SNE를 통해 시각화가 가능하다라는 것입니다.

강화학습 용어

환경(Environment)은 행위자(Agent)가 행동하는 공간입니다. 어떤 상태(State)에서 행위자의 행위(Action)에 따라 새로운 상태(State)으로의 변화와 그 행위에 대한 보상(Reward)이 만들어집니다. 연속된 행위의 처음과 종료까지를 하나의 에피소드(Episode)라고 하는데, 하나의 에피소드를 통해 얻어진 보상의 합을 수익(G)이라고 합니다. 강화학습은 바로 이 수익을 최대화시키기 위한 행위가 선택될 수 있는 정책(Policy)를 강화시키는 것이 목표입니다.

환경이 미로일때, 위의 그림은 행위자가 할 수 있는 행위(Action)입니다. 즉, 미로에서 행위자가 어떤 위치(상태;State)에 있을때 위쪽, 오른쪽, 아래쪽, 왼쪽으로 이동할 수 있는 행위를 나타냅니다. s4에서 행위자가 a1이라는 행위를 했을때 항상 s1으로 이동하는 것을 보장한다면, 이러한 환경을 결정론적 환경이라고 하며, 상태전이확률이 1이라고 합니다.

행위에 대한 가치 또는 상태에 대한 가치를 파악하기 위한 그림으로 백업다이어그램(Backup-Diagram)을 사용하는데, 위의 그림처럼 처음 상태에 대해서 취할 수 있는 행위에 대한 새로운 상태로의 전이를 표현하고 있으며, 각 상태에서의 보상값도 표시하고 있습니다. 보상은 지금 당장의 상태에서 받는 것이 아니고 행위에 대한 그 다음 상태에서 받게 된다는 것에 유의해야 합니다.

강화학습에서 환경(Environment)은 보상 시스템입니다. 다른 학습과는 다르게 강화학습은 데이터로 진행되지 않고, 환경이라는 프로그래밍 시스템을 통해 이루어진다는 점이 큰 매력입니다.