함수들에 대한 그래프 시각화

선형 함수에 대한 정의와 그래프 시각화는 다음 코드와 같다.

import numpy as np
import matplotlib.pylab as plt

def identity_func(x):
    return x

x = np.arange(-10, 10, 0.01)
plt.plot(x, identity_func(x), linestyle='-', label="identity")
plt.ylim(-10, 10)
plt.legend()
plt.show() 

결과는 다음과 같다.

기울기와 y절편을 고려한 선형 함수의 정의는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
  
def linear_func(x):
    return 2 * x + 1 
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, linear_func(x), linestyle='-', label="linear_func")
plt.ylim(-10, 10)
plt.legend()
plt.show() 

결과는 다음과 같다.

계단함수에 대한 정의는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def binarystep_func(x):
    return (x>=0)*1
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, binarystep_func(x), linestyle='-', label="binarystep_func")
plt.ylim(-5, 5)
plt.legend()
plt.show() 

결과는 다음과 같다.

로지스틱(Logistic) 또는 시그모이드(Sigmoid)라고 불리는 함수 정의는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt

def softstep_func(x):
    return 1 / (1 + np.exp(-x))

x = np.arange(-10, 10, 0.01)
plt.plot(x, softstep_func(x), linestyle='-', label="softstep_func")
plt.ylim(0, 1)
plt.legend()
plt.show()     

결과는 다음과 같다.

TanH 함수 정의 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def tanh_func(x):
    return np.tanh(x)
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, tanh_func(x), linestyle='-', label="tanh_func")
plt.ylim(-1, 1)
plt.legend()
plt.show()     

그래프는 다음과 같다.

ArcTan 함수 정의는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt

def arctan_func(x):
    return np.arctan(x)
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, arctan_func(x), linestyle='-', label="arctan_func")
plt.ylim(-1.5, 1.5)
plt.legend()
plt.show()     

그래프는 다음과 같다.

Soft Sign 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def softsign_func(x):
    return x / ( 1+ np.abs(x) )
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, softsign_func(x), linestyle='-', label="softsign_func")
plt.ylim(-1, 1)
plt.legend()
plt.show()     

그래프는 다음과 같다.

ReLU(Rectified Linear Unit) 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def relu_func(x):
    return (x>0)*x
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, relu_func(x), linestyle='-', label="relu_func")
plt.ylim(-1, 11)
plt.legend()
plt.show()     

결과는 다음과 같다.

Leaky ReLU 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def leakyrelu_func(x, alpha=0.1):
    return (x>=0)*x + (x<0)*alpha*x
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, leakyrelu_func(x), linestyle='-', label="leakyrelu_func")
plt.ylim(-2, 11)
plt.legend()
plt.show()   

결과는 다음과 같다.

ELU(Exponential Linear Unit) 함수는 다음과 같다.

def elu_func(x, alpha=0.9):
    return (x>=0)*x + (x<0)*alpha*(np.exp(x)-1)
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, elu_func(x), linestyle='-', label="elu_func")
plt.ylim(-2, 11)
plt.legend()
plt.show()    

결과는 다음과 같다.

TreLU 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def trelu_func(x, thres=2):
    return (x>thres)*x
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, trelu_func(x), linestyle='-', label="trelu_func")
plt.ylim(-2, 11)
plt.legend()
plt.show()     

결과는 다음과 같다.

SoftPlus 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def softplus_func(x):
    return np.log( 1 + np.exp(x) )
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, softplus_func(x), linestyle='-', label="softplus_func")
plt.ylim(-1, 11)
plt.legend()
plt.show()     

결과는 다음과 같다.

Bent identity 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def bentidentity_func(x):
    return (np.sqrt(x*x+1)-1)/2+x

x = np.arange(-10, 10, 0.01)
plt.plot(x, bentidentity_func(x), linestyle='-', label="bentidentity_func")
plt.ylim(-6, 11)
plt.legend()
plt.show()

결과는 다음과 같다.

Gaussian 함수는 다음과 같다.

import numpy as np
import matplotlib.pylab as plt
 
def gaussian_func(x):
    return np.exp(-x*x)
 
x = np.arange(-10, 10, 0.01)
plt.plot(x, gaussian_func(x), linestyle='-', label="gaussian_func")
plt.ylim(-0.5, 1.5)
plt.legend()
plt.show()

결과는 다음과 같다.

pandas의 DataFrame에 대한 Inner Join, Outer Join, Left Join, Right Join

판다스에서 데이터프레임은 테이블 형식의 데이터셋입니다. DBMS의 Table들 간에도 Join을 맺을 수 있듯이, 마찬가지로 판다스의 데이터프레임들 간에도 Join을 맺을 수 있습니다. 물론 Join을 맺을 공통 필드가 존재한다면 말입니다.

Join에는 모두 4가지 방식이 존재합니다. 즉, 두 데이터셋 간의 중복된 요소만을 Join하는 Inner Join과 두 데이터셋에 대한 모든 데이터를 Join하는 Outter Join, 그리고 왼쪽 데이터셋을 기준으로 하는 Left Join과 오른쪽 데이터셋을 기준으로 하는 Right Join입니다. 보다 명확한 Join의 파악은 아래의 코드 예제를 통해 파악할 수 있습니다.

먼저 Join 하고자 하는 데이터셋으로, 판다스의 데이터프레임을 아래 코드처럼 정의합니다.

import pandas as pd

data_A = {'key': [1,2,3], 'name': ['Jane', 'John', 'Peter']}
dataframe_A = pd.DataFrame(data_A, columns = ['key', 'name'])

data_B = {'key': [2,3,4], 'age': [18, 15, 20]}
dataframe_B = pd.DataFrame(data_B, columns = ['key', 'age'])

print(dataframe_A)
print(dataframe_B)

결과는 아래와 같습니다.

   key   name
0    1   Jane
1    2   John
2    3  Peter
   key  age
0    2   18
1    3   15
2    4   20

두 데이터프레임 간에는 key라는 공통 필드가 존재하는 것을 볼 수 있습니다. 이를 토대로 먼저 Inner Join에 대한 코드입니다.

df_INNER_JOIN = pd.merge(dataframe_A, dataframe_B, left_on='key', right_on='key', how='inner')
print(df_INNER_JOIN)

위의 코드의 결과는 다음과 같습니다.

   key   name  age
0    2   John   18
1    3  Peter   15

다음은 Outer Join에 대한 코드입니다.

df_OUTER_JOIN = pd.merge(dataframe_A, dataframe_B, left_on='key', right_on='key', how='outer')
print(df_OUTER_JOIN)

결과는 다음과 같습니다.

   key   name   age
0    1   Jane   NaN
1    2   John  18.0
2    3  Peter  15.0
3    4    NaN  20.0

다음은 Left Join에 대한 코드입니다.

df_LEFT_JOIN = pd.merge(dataframe_A, dataframe_B, left_on='key', right_on='key', how='left')
print(df_LEFT_JOIN)

결과는 다음과 같습니다.

   key   name   age
0    1   Jane   NaN
1    2   John  18.0
2    3  Peter  15.0

다음은 Right Join에 대한 코드입니다.

df_RIGHT_JOIN = pd.merge(dataframe_A, dataframe_B, left_on='key', right_on='key', how='right')
print(df_RIGHT_JOIN)

다음은 실행 결과입니다.

   key   name  age
0    2   John   18
1    3  Peter   15
2    4    NaN   20

모든 Join은 pd.merge 함수를 통해 이루어지는데요. 위의 예제 코드를 보면 두 데이터프레임의 Join 필드가 모두 ‘key’라는 것을 알 수 있습니다. 이처럼 Join 필드의 이름이 동일할 경우 pd.merge의 left_on과 right_on 인자 대신 on 인자 하나로 대체가 가능합니다. 예를들어, Inner Join의 경우는 아래와 같습니다.

df_INNER_JOIN = pd.merge(dataframe_A, dataframe_B, on='key')

pd.merge 함수의 인자중 how도 생략되었는데, 이는 Inner Join이 pd.merge의 인자 how의 기본값이기 때문입니다.