PyTorch의 Tensor 연산 퀵 레퍼런스

이 글은 PyTorch를 이용한 딥러닝 개발 시에 Tensor 연산에 대한 내용을 빠르게 참조하기 위해 정리한 글입니다.

#1. 난수값으로 구성된 2×3 텐서 생성

import torch

x = torch.rand(2,3)
print(x)

#2. 정규분포 난수값으로 구성된 2×3 텐서 생성

import torch

x = torch.randn(2,3)
print(x)

#3. [0,10) 까지의 정수형 난수값으로 구성된 2×3 텐서 생성

import torch

x = torch.randint(0,10,size=(2,3))
print(x)

#4. 0으로 채워진 2×3 텐서 생성

import torch

x = torch.zeros(2,3)
print(x)

#5. 다른 텐서의 형상과 동일한 Zero 텐서 생성하기

import torch

ref = torch.rand(2,3)
x = torch.zeros_like(ref)
print(x)

#6. 1로 채워진 2×3 텐서 생성하기

import torch

x = torch.ones(2,3)
print(x)

#7. 다른 텐서의 형상과 동일한 1값으로 구성된 텐서 생성하기

import torch

ref = torch.rand(2,3)
x = torch.ones_like(ref)
print(x)

#8. 텐서의 타입 얻기

import torch

x = torch.rand(2,3)
print(x.type()) # torch.FloatTensor
print(type(x)) # 

#9. 요소값을 정수형 값으로 변환한 텐서 생성하기

import torch

x = torch.rand(2,3) + 1.5
int_x = x.type(dtype=torch.IntTensor)
print(int_x)

#10. 넘파이 배열로부터 텐서 만들기, 텐서로부터 넘파이 배열 만들기

import torch
import numpy as np

x1 = np.ndarray(shape=(2,3), dtype=int, buffer=np.array([1,2,3,4,5,6]))
x2 = torch.from_numpy(x1)
print(x2, x2.type())

x3 = x2.numpy()
print(x3)

#11. 요소값 배열을 통해 실수형 텐서 만들기

import torch

x = torch.FloatTensor([[1,2,3],[4,5,6]])
print(x)

#12. 텐서를 GPU에, 또는 CPU로 옮기기

import torch

x = torch.FloatTensor([[1,2,3],[4,5,6]])

cpu = torch.device('cpu')
gpu = torch.device('cuda')

if torch.cuda.is_available():
    x_gpu = x.to(gpu)
    print(x_gpu)

x_cpu = x_gpu.to(cpu)
print(x_cpu)

#13. 텐서의 크기

import torch

x = torch.FloatTensor(2,3,4,4)
print(x.size()) # torch.Size([2, 3, 4, 4])
print(x.size()[1:2]) torch.Size([3])

#14. 텐서의 요소값 접근

import torch

x = torch.randn(4,3)
print(x)
''' output:
tensor([[ 0.1477,  0.4707, -0.7333],
        [ 0.8718,  0.1213,  0.6299],
        [ 0.2991,  1.1437, -0.7631],
        [ 1.3319,  0.8322, -2.4153]])
'''

print(x[1:3,:])
''' output:
tensor([[ 0.8718,  0.1213,  0.6299],
        [ 0.2991,  1.1437, -0.7631]])
'''

#15. 인덱스값으로 지정된 요소값으로 구성된 새로운 텐서 생성하기(값 복사됨)

import torch

x = torch.randn(4,3)
print(x)
'''output:
tensor([[-0.1728,  0.0887, -0.0186],
        [ 0.9492, -0.0452,  0.5660],
        [-0.4184, -0.2162,  1.0297],
        [-0.5110,  0.2452,  1.0734]])
'''

selected = torch.index_select(x,dim=1,index=torch.LongTensor([0,2]))
print(selected)
'''output:
tensor([[-0.1728, -0.0186],
        [ 0.9492,  0.5660],
        [-0.4184,  1.0297],
        [-0.5110,  1.0734]])
'''

#16. 마스크 텐서로 새로운 텐서 생성하기

import torch

x = torch.randn(2,3)
print(x)
'''output:
tensor([[ 0.1622,  1.1205, -0.4761],
        [ 0.9225,  0.2151,  0.2192]])
'''

mask = torch.BoolTensor([[False, False, True],[False,True,False]])
out = torch.masked_select(x, mask)
print(out)
'''output:
tensor([-0.4761,  0.2151])
'''

#17. 2개의 텐서 결합하기

import torch

x = torch.FloatTensor([[1,2,3],[4,5,6]])
y = torch.FloatTensor([[-1,-2,-3],[-4,-5,-6]])

z1 = torch.cat([x,y], dim=0)
print(z1)
'''
tensor([[ 1.,  2.,  3.],
        [ 4.,  5.,  6.],
        [-1., -2., -3.],
        [-4., -5., -6.]])
'''

z2 = torch.cat([x,y], dim=1)
print(z2)
'''
tensor([[ 1.,  2.,  3., -1., -2., -3.],
        [ 4.,  5.,  6., -4., -5., -6.]])
'''

#18. 2개의 텐서 결합하기(stack 함수)

import torch

x = torch.FloatTensor([[1,2,3],[4,5,6]])
x_stack = torch.stack([x,x,x,x],dim=0)
print(x_stack)
'''
tensor([[[1., 2., 3.],
         [4., 5., 6.]],

        [[1., 2., 3.],
         [4., 5., 6.]],

        [[1., 2., 3.],
         [4., 5., 6.]],

        [[1., 2., 3.],
         [4., 5., 6.]]])
'''

y_stack = torch.stack([x,x,x,x],dim=1)
print(y_stack)
'''
tensor([[[1., 2., 3.],
         [1., 2., 3.],
         [1., 2., 3.],
         [1., 2., 3.]],

        [[4., 5., 6.],
         [4., 5., 6.],
         [4., 5., 6.],
         [4., 5., 6.]]])
'''

#19. 하나의 텐서를 n개로 분해하기

import torch

z1 = torch.FloatTensor([
    [ 1.,  2.,  3.],
    [ 4.,  5.,  6.],
    [-1., -2., -3.],
    [-4., -5., -6.]
])
x_1,x_2 = torch.chunk(z1,2,dim=0)
print(x_1,x_2,sep='\n')
'''
tensor([[1., 2., 3.],
        [4., 5., 6.]])
tensor([[-1., -2., -3.],
        [-4., -5., -6.]])
'''

y_1,y_2 = torch.chunk(z1,2,dim=1)
print(y_1,y_2,sep='\n')
'''
tensor([[ 1.,  2.],
        [ 4.,  5.],
        [-1., -2.],
        [-4., -5.]])
tensor([[ 3.],
        [ 6.],
        [-3.],
        [-6.]])
'''

#20. 하나의 텐서를 분리하기

import torch

z1 = torch.FloatTensor([
    [ 1.,  2.,  3.],
    [ 4.,  5.,  6.],
    [-1., -2., -3.],
    [-4., -5., -6.]
])
x1,x2 = torch.split(z1,2,dim=0)
print(x1,x2,sep='\n')
'''
tensor([[1., 2., 3.],
        [4., 5., 6.]])
tensor([[-1., -2., -3.],
        [-4., -5., -6.]])
'''

y1,y2 = torch.split(z1,2,dim=1)
print(y1,y2,sep='\n')
'''
tensor([[ 1.,  2.],
        [ 4.,  5.],
        [-1., -2.],
        [-4., -5.]])
tensor([[ 3.],
        [ 6.],
        [-3.],
        [-6.]])
'''

y = torch.split(z1,2,dim=1)
for i in y:
    print(i)
'''
tensor([[ 1.,  2.],
        [ 4.,  5.],
        [-1., -2.],
        [-4., -5.]])
tensor([[ 3.],
        [ 6.],
        [-3.],
        [-6.]])
'''

#21. 1개 요소를 갖는 축 제거

import torch

x1 = torch.FloatTensor(10,1,3,1,4)
x2 = torch.squeeze(x1)
print(x1.size(),x2.size()) # torch.Size([10, 1, 3, 1, 4]) torch.Size([10, 3, 4])

#22. unsqueeze 연산

import torch

x1 = torch.FloatTensor(10,3,4)
x2 = torch.unsqueeze(x1, dim=0)
print(x1.size(),x2.size()) # torch.Size([10, 3, 4]) torch.Size([1, 10, 3, 4])

x3 = torch.unsqueeze(x1, dim=1)
print(x1.size(),x3.size()) # torch.Size([10, 3, 4]) torch.Size([10, 1, 3, 4])

#23. 다양한 분포를 갖는 텐서 만들기

import torch
import torch.nn.init as init

x1 = init.uniform_(torch.FloatTensor(3,4),a=0,b=9)
print(x1)

x2 = init.normal_(torch.FloatTensor(3,4),std=0.2)
print(x2)

x3 = init.constant_(torch.FloatTensor(3,4),3.1415926)
print(x3)

#24. 텐서간의 합

import torch

x1 = torch.FloatTensor([[1,2,3],[4,5,6]])
x2 = torch.FloatTensor([[1,2,3],[4,5,6]])

add1 = torch.add(x1,x2)
print(add1)

add2 = x1+x2
print(add2)

#25. 텐서의 브로드케스트 합

import torch

x1 = torch.FloatTensor([[1,2,3],[4,5,6]])
x2 = x1 + 10
print(x2)

#26. 텐서 요소간의 곱

import torch

x1 = torch.FloatTensor([[1,2,3],[4,5,6]])
x2 = torch.FloatTensor([[1,2,3],[4,5,6]])

x3 = torch.mul(x1,x2)
print(x3)
'''
tensor([[ 1.,  4.,  9.],
        [16., 25., 36.]])
'''

x4 = x1*x2
print(x4)
'''
tensor([[ 1.,  4.,  9.],
        [16., 25., 36.]])
'''

#27. 텐서 요소간의 나누기

import torch

x1 = torch.FloatTensor([[1,2,3],[4,5,6]])
x2 = torch.FloatTensor([[1,2,3],[4,5,6]])

x3 = torch.div(x1,x2)
print(x3)
'''
tensor([[1., 1., 1.],
        [1., 1., 1.]])
'''

x4 = x1/x2
print(x4)
'''
tensor([[1., 1., 1.],
        [1., 1., 1.]])
'''

#28. 텐서 요소의 제곱

import torch

x1 = torch.FloatTensor([[1,2,3],[4,5,6]])

x2 = torch.pow(x1,2)
print(x2)
'''
tensor([[ 1.,  4.,  9.],
        [16., 25., 36.]])
'''

x3 = x1**2
print(x3)
'''
tensor([[ 1.,  4.,  9.],
        [16., 25., 36.]])
'''

#29. 텐서 요소의 지수 연산

import torch

x1 = torch.FloatTensor([[1,2,3],[4,5,6]])
x2 = torch.exp(x1)
print(x2)

#30. 텐서 요소의 로그 연산

import torch

x1 = torch.FloatTensor([[1,2,3],[4,5,6]])
x2 = torch.log(x1)
print(x2)

#31. 행렬곱

import torch

x1 = torch.FloatTensor([[1,2,3],[4,5,6]])
x2 = torch.FloatTensor([[1,2,3],[4,5,6],[7,8,9]])
x3 = torch.mm(x1,x2)
print(x3)
'''
tensor([[30., 36., 42.],
        [66., 81., 96.]])
'''

#32. 배치 행렬곱 연산(맨 앞에 batch 차원은 유지하면서 뒤에 요소들의 행렬곱)

import torch

x1 = torch.FloatTensor([
    [[1,2,3],[4,5,6]],
    [[1,2,3],[4,5,6]],
])
x2 = torch.FloatTensor([
    [[1,2,3],[4,5,6],[7,8,9]],
    [[1,2,3],[4,5,6],[7,8,9]],
])
x3 = torch.bmm(x1,x2)
print(x3)
'''
tensor([[[30., 36., 42.],
         [66., 81., 96.]],

        [[30., 36., 42.],
         [66., 81., 96.]]])
'''

#33. 벡터의 내적

import torch

x1 = torch.tensor([1,2,3,4])
x2 = torch.tensor([2,3,4,5])
x3 = torch.dot(x1,x2)
print(x3) # tensor(40)

#34. 텐서의 전치

import torch

x1 = torch.tensor([[1,2,3],[4,5,6],[7,8,9]])
print(x1)
x2 = x1.t()
print(x2)

#35. 텐서의 내부 차원 간 바꿈

import torch

hwc_img_data = torch.rand(100, 64, 32, 3)
print(hwc_img_data.size()) # torch.Size([100, 64, 32, 3])
chw_img_data = hwc_img_data.transpose(1,2)
print(chw_img_data.size()) # torch.Size([100, 32, 64, 3])
chw_img_data = chw_img_data.transpose(1,3)
print(chw_img_data.size()) # torch.Size([100, 3, 64, 32])

#36. 벡터의 내적, 행렬과 벡터의 곱, 행렬간 곱

import torch

m = torch.randn(100,10)
v = torch.randn(10)

d = torch.matmul(v,v) # = torch.dot, 벡터의 내적
print(d)

v2 = torch.matmul(m,v) # = torch.mv, 행렬과 벡터의 곱
print(v2)

m2 = torch.matmul(m.t(), m) # = torch.mm, 행렬 곱
print(m2)

#37. 다항분포 확률값 기반의 샘플링

import torch
 
x1 = torch.FloatTensor(
    [
        [1,2,3,4,5,6,7,8,9],
        [9,8,7,6,5,4,3,2,1],
        [1,2,3,4,5,6,7,8,9],
        [9,8,7,6,5,4,3,2,1]
    ]
)
i = torch.multinomial(x1.exp(), 1)
print(i)
'''
output:
tensor([[8],
        [0],
        [7],
        [1]])
'''

torch.multinomial 함수는 2개의 인자를 받는데, 첫번째 인자는 확률로 해석될 수 있는 텐서이고 두번째는 샘플링할 개수이다. 첫번째 인자는 확률로 해석할 수 있지만, 정규화될 필요는 없다. 여기서 정규화란 더해서 1이 되어야 한다는 의미이다. 결과에서 보면 알 수 있듯이 샘플링된 값의 인덱스 값이 반환된다.

#38. 상위 n개 가져오기

import torch
 
x = torch.rand(10)
print(x) # tensor([0.9097, 0.3766, 0.6321, 0.0760, 0.0137, 0.1760, 0.0655, 0.7696, 0.5172, 0.4140])

scores, indices = torch.topk(x, 3)

for i in range(0,3):
    print(indices[i].item(), scores[i].item())
'''output:
0 0.909696102142334
7 0.769554853439331
2 0.6320836544036865
'''

[PyQt5] QPainter를 이용한 다양한 그래픽

위젯은 자신을 다시 그릴때 paintEvent 함수를 호출합니다. 즉, 위젯에 무언가를 그리기에 가장 적당한 시점은 paintEvent입니다. 또한 여기에 그래픽 요소를 그리기 위해서 QPainter라는 API를 사용할 수 있습니다. 이 두가지를 조합하여 위젯을 상속받는 윈도우를 화면에 표시하고 이 윈도우에 원하는 그래픽 요소를 그리는 예를 살펴보겠습니다.

먼저 위젯을 상속받는 MyWindow라는 클래스를 하나 정의하는데, 이 클래스에는 앞서 언급한 paintEvent 함수를 재정의하고 있습니다.

import sys, random
from PyQt5.QtWidgets import QWidget, QApplication
from PyQt5.QtGui import QPainter, QColor, QFont, QPen, QBrush, QPainterPath
from PyQt5.QtCore import Qt

class MyWindow(QWidget):
    def __init__(self):
        super().__init__()
        self.initUI()
        
    def initUI(self):      
        self.setGeometry(300, 300, 400, 400)
        self.setWindowTitle('QPainter를 이용한 그래픽스')
        self.show()

    def paintEvent(self, event):
        qp = QPainter()
        qp.begin(self)

        # 그리기 함수의 호출 부분

        qp.end()
        
if __name__ == '__main__':
    app = QApplication(sys.argv)
    ex = MyWindow()
    sys.exit(app.exec_())

위의 코드에서 20번째 줄에 그리기 함수를 호출함으로써 그 결과를 살펴볼 수 있는데요. 그리기 함수는 MyWindow 클래스의 맴버 함수로써 정의합니다. 먼저 텍스트를 그리는 함수입니다.

    def drawText(self, event, qp):
        qp.setPen(QColor(0, 0, 0))
        qp.setFont(QFont('나눔명조', 35))
        qp.drawText(event.rect(), Qt.AlignCenter, '스산한 늦가을\n아니.. 초겨울인가?')

결과는 아래와 같습니다.

다음은 화면에 포인트를 찍는 함수입니다.

    def drawPoints(self, event, qp):
        pen = QPen(Qt.gray, 3)
        qp.setPen(pen)

        size = self.size()
        
        for i in range(700):
            x = random.randint(1, size.width()-1)
            y = random.randint(1, size.height()-1)
            qp.drawPoint(x, y)  

결과는 아래와 같습니다.

다음은 사각형을 그리는 함수입니다.

    def drawRectangles(self, qp):
        col = QColor(0, 0, 0)
        col.setNamedColor('#d4d4d4')
        qp.setPen(col)

        qp.setBrush(QColor(200, 0, 0))
        qp.drawRect(50, 50, 100, 100)

        qp.setBrush(QColor(255, 80, 0, 160))
        qp.drawRect(150, 150, 100, 100)

        qp.setBrush(QColor(25, 0, 90, 200))
        qp.drawRect(250, 250, 100, 100)

결과는 아래와 같습니다.

다음은 선을 그리는 함수입니다.

    def drawLines(self, qp):
        pen = QPen(Qt.black, 3, Qt.SolidLine)

        qp.setPen(pen)
        qp.drawLine(50, 50, 350, 50)

        pen.setStyle(Qt.DashLine)
        qp.setPen(pen)
        qp.drawLine(50, 110, 350, 110)

        pen.setStyle(Qt.DashDotLine)
        qp.setPen(pen)
        qp.drawLine(50, 170, 350, 170)

        pen.setStyle(Qt.DotLine)
        qp.setPen(pen)
        qp.drawLine(50, 230, 350, 230)

        pen.setStyle(Qt.DashDotDotLine)
        qp.setPen(pen)
        qp.drawLine(50, 290, 350, 290)

        pen.setStyle(Qt.CustomDashLine)
        pen.setDashPattern([1, 4, 5, 4])
        qp.setPen(pen)
        qp.drawLine(50, 350, 350, 350)

결과는 아래와 같습니다.

다음은 다양한 채움 스타일로 사각형을 그리는 함수입니다.

    def drawBrushes(self, qp):
        brush = QBrush(Qt.SolidPattern)
        qp.setBrush(brush)
        qp.drawRect(20, 20, 110, 110)

        brush.setStyle(Qt.Dense1Pattern)
        qp.setBrush(brush)
        qp.drawRect(145, 20, 110, 110)

        brush.setStyle(Qt.Dense2Pattern)
        qp.setBrush(brush)
        qp.drawRect(270, 20, 110, 110)

        brush.setStyle(Qt.DiagCrossPattern)
        qp.setBrush(brush)
        qp.drawRect(20, 145, 110, 110)

        brush.setStyle(Qt.Dense5Pattern)
        qp.setBrush(brush)
        qp.drawRect(145, 145, 110, 110)

        brush.setStyle(Qt.Dense6Pattern)
        qp.setBrush(brush)
        qp.drawRect(270, 145, 110, 110)

        brush.setStyle(Qt.HorPattern)
        qp.setBrush(brush)
        qp.drawRect(20, 270, 110, 110)

        brush.setStyle(Qt.VerPattern)
        qp.setBrush(brush)
        qp.drawRect(145, 270, 110, 110)

        brush.setStyle(Qt.BDiagPattern)
        qp.setBrush(brush)
        qp.drawRect(270, 270, 110, 110)

결과는 아래와 같습니다.

다음은 베이지 곡선을 그리는 함수입니다.

    def drawBezierCurve(self, qp):
        pen = QPen(Qt.black, 7)
        qp.setPen(pen)

        path = QPainterPath()
        path.moveTo(50, 50)
        path.cubicTo(200, 50, 50, 350, 350, 350)
        
        qp.drawPath(path)

결과는 아래와 같습니다.