Python과 OpenCV – 28 : Watershed 알고리즘을 이용한 이미지 분할

이 글의 원문은 https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_watershed/py_watershed.html 입니다.

회색조 이미지는 지형처럼 해석할 수 있는데, 값이 높은 픽셀 위치는 산꼭대기이고 값이 낮은 픽셀 위치는 계곡이라고 해석할 수 있습니다. 지형이므로 고립되어 분리된 계곡이 있을 것이고 이 계곡들을 서로 다른 색의 물로 채우기 시작하면 물이 점점 차오르다가 이웃한 계곡의 언저리에서 물이 합쳐지게 됩니다. 물이 합쳐지는 것을 피하기 위해서 합쳐지는 순간에서의 위치에 경계를 생성하는거죠. 그럼 이 경계선이 이미지 분할의 결과가 됩니다. 이것이 바로 Watershed 알고리즘의 기본철학입니다. 아래의 동영상 이미지를 보면 좀더 직관적으로 이해할 수 있습니다.

이 방식을 통해 이미지를 분할하게 되면 분할에 오류가 발생할 수 있는데, 이는 이미지의 잡음이나 어떤 불규칙한 것들로 인한 요소 등이 이유입니다. 그래서 OpenCV는 마커 기반의 Watershed 알고리즘을 구현해 제공하는데.. 각 계곡을 구성하는 화소들을 병합시켜 번호를 매기고, 병합 수 없는 애매한 화소는 0값을 매깁니다. 이를 인터렉티브한 이미지 분할 기법이라고 합니다. 우리가 알고 있는 객체에 각각에 대해 0 이상의 번호를 매기는 것인데요. 전경이 되거나 객체인 것에, 또 배경에도 0 이상의 값을 매깁니다. 그러나 그외 불명확하다라고 판단되는 것은 0을 매깁니다. 이 불명확한 것이 어떤 요소, 즉 배경인지 전경인지 또는 어떤 객체의 소유인지는 Watershed 알고리즘을 통해 결정됩니다. Watershed 알고리즘을 통해 분할 경계선이 생길 것이고 이 경계선에 대해서는 -1 값을 매깁니다.

자, 이제 이론에 대한 설명은 끝났으므로 예제 코드를 살펴보겠습니다.

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('./data/water_coins.jpg')

# 이진 이미지로 변환
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

# 잡음 제거
kernel = np.ones((3,3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)

# 이미지 확장을 통해 확실한 배경 요소 확보
sure_bg = cv2.dilate(opening, kernel, iterations=3)

# distance transform을 적용하면 중심으로 부터 Skeleton Image를 얻을 수 있음.
# 이 결과에 Threshold를 적용하여 확실한 객체 또는 전경 요소를 확보
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, sure_fg = cv2.threshold(dist_transform, 0.5*dist_transform.max(), 255, 0)
sure_fg = np.uint8(sure_fg)

# 배경과 전경을 제외한 영역 곳을 확보
unknown = cv2.subtract(sure_bg, sure_fg)

# 마커 생성 작성
ret, markers = cv2.connectedComponents(sure_fg)
markers = markers + 1
markers[unknown == 255] = 0

# 앞서 생성한 마커를 이용해 Watershed 알고리즘을 적용
markers = cv2.watershed(img, markers)
img[markers == -1] = [255,0,0]

images = [gray,thresh,opening, sure_bg, dist_transform, sure_fg, unknown, markers, img]
titles = ['Gray', 'Binary', 'Opening', 'Sure BG', 'Distance', 'Sure FG', 'Unknow', 'Markers', 'Result']

for i in range(len(images)):
    plt.subplot(3,3,i+1)
    plt.imshow(images[i])
    plt.title(titles[i])
    plt.xticks([])
    plt.yticks([])

plt.show()

실행 결과는 다음과 같습니다.

코드와 실행 결과를 비교해 가며, 설명을 해 보면.. 먼저 5번 코드에서 입력 이미지를 파일로부터 읽고 이 이미지를 2진 이미지로 생성하는 것이 5-9번 코드이고 결과 이미지의 Binary입니다. 잡음을 제거 하기 위해 12-13번 코드가 실행되고 결과 이미지의 Opening입니다. 잡음을 제거한 이미지에 dilate 함수를 통해 이미지의 객체를 확장시킨 것이 16번 코드이고 결과 이미지의 Sure_BG입니다. 이제 확실한 전경 또는 객체에 대한 화소를 얻기 위해 18-22번 코드가 실행되고 그 결과 이미지는 Sure_FG입니다. Sure_FG는 결과 이미지의 Distance 이미지로부터 threshold 처리를 통해 얻어진 것입니다. 이제 배경인 Sure_BG에서 전경인 Sure_FG를 빼면 애매모호한 영역을 얻을 수 있게 되는데, 25번 코드가 이에 해당되고 그 결과 이미지는 Unknonw입니다. 즉 어떤 문제를 해결하기 위해 문제의 범위를 좁혀 나가고 있다는 것을 직감할 수 있습니다. 이제 마커 이미지를 sure_fg를 이용해 생성하는데 28-30번 코드입니다. 머커는 0값부터 지정되므로 결과 마커에 1씩 증감시키고, 애매모호한 부분에 대해서는 0 값을 지정합니다. 앞서 이론에 언급했던 것처럼요. 마커가 준비되었으므로, 이제 Watershed 알고리즘을 적용하고 분할 경계선에 해당되는 화소에 지정된 값인 -1을 가지는 부분을 [255,0,0] 색상으로 지정하는 것이 33-34번 코드이며, 최종 결과 이미지인 Result입니다.

Python과 OpenCV – 27 : 이미지에서 원형 도형 검출(Hough Circle Transform)

이 글의 원문은 https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_houghcircles/py_houghcircles.html#hough-circles 입니다.

앞서 이미지에서 선형 도형을 검출하는데, Hough Transform 알고리즘을 사용했습니다. 이 알고리즘은 수학적 모델링이 가능한 모든 도형을 이미지에서 검출할 수 있는 방법입니다. 그렇다면 원형에 대한 수학적 모델식을 이용해 Hought Transform을 적용할 수 있는데, 문제는 원에 대한 수학식이 중심점 (x, y)와 반지름(r)이라는 3개의 매개변수로 구성되어 있고, 결국 3차원 배열이라는 저장소를 요구한다는 점. 그럼으로 인해 연산이 매우 비효율적이라는 점입니다. 이에 대한 개선으로 Gradient(가장자리에서의 기울기값)을 이용하여 Hought Transform을 적용할 수 있고, 이에 대한 구현으로 OpenCV에서는 cv2.HoughCircles 함수를 제공합니다. 이 함수의 예는 다음과 같습니다.

import cv2
import numpy as np

img = cv2.imread('./data/opencv_logo.png',0)
img = cv2.medianBlur(img,5)
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)

circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,20,
                            param1=50,param2=30,minRadius=0,maxRadius=0)

circles = np.uint16(np.around(circles))
for i in circles[0,:]:
    cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)

cv2.imshow('detected circles',cimg)
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.HoughCircles는 제법 많은 인자를 받는데요. 위의 예제를 통해 보면, 첫번째는 입력 이미지로써 8비트 단일 채널인 Grayscale 이미지, 두번째는 방식으로써 현재는 cv2.HOUGH_GRADIENT만을 지원합니다. 세번째는 대부분 1을 지정하는데, 이 경우 입력 이미지와 동일한 해상도가 사용됩니다. 네번째는 검출한 원의 중심과의 최소거리값으로 이 최소값보다 작으면 원으로 판별되지 않습니다. 그리고 param1은 Canny Edge에 전달되는 인자값, param2는 검출 결과를 보면서 적당이 조정해야 하는 값으로 작으면 오류가 높고 크면 검출률이 낮아진다고 합니다. minRadius와 masRadius는 각각 원의 최소, 최대 반지름이고 0으로 지정하면 사용되지 않습니다. 결과는 다음과 같습니다.