Python과 OpenCV – 34 : SURF(Speeded-Up Robust Feature)을 이용한 이미지의 특징점 추출

이 글의 원문은 https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html 입니다.

SURF는 SIFT의 수행 속도를 개선시킨 것으로, 분석에 따르면 대략 3배 정도 빠르다고 합니다.SURF는 이미지가 회전되거나 Blurring 처리가 되었을 때에 사용해도 잘 잘동하지만 밝기가 변경되거나 시점이 변경이 되면 적당하지 않습니다.

OpenCV에서 제공하는 SURF와 관련된 함수를 살펴보겠습니다.

import cv2
import numpy as np

filename = './data/butterfly.jpg'
img = cv2.imread(filename)
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

surf = cv2.xfeatures2d.SURF_create(50000)

kp, des = surf.detectAndCompute(gray, None)

print(len(kp))

img2 = cv2.drawKeypoints(gray,kp,None,(0,0,255),4)

cv2.imshow('img2', img2)
cv2.waitKey()
cv2.destroyAllWindows()

위의 코드에서 이미지의 특징점을 추출하기 위한 SURF 기능을 사용하기 위해 8번 코드에서 SURF 객체를 생성합니다. 생성시 받는 인자는 Hessian 임계값으로 이 값이 작을수록 더 많은 특징점이 추출됩니다. 위 예제에서는 추출될 특징점 개수를 줄이기 위해 50000을 지정했으나 실제에서는 300-500 사이의 값을 지정합니다. 12번 코드에서 추출한 특징점의 개수를 출력하고 특징점을 이미지에 그리기 위해 14번 코드가 실행되었습니다. 결과는 다음과 같습니다.

위의 결과를 보면 특징점의 방향도 같이 표시되고 있는데, 방향이 필요없을 경우 속도 향상을 위해 방향 계산은 하지 않도록 할 수 있으며 아래 예제와 같습니다.

import cv2
import numpy as np

filename = './data/butterfly.jpg'
img = cv2.imread(filename)
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

surf = cv2.xfeatures2d.SURF_create(50000)

surf.setUpright(True)
kp, des = surf.detectAndCompute(gray, None)

print(len(kp))

img2 = cv2.drawKeypoints(gray,kp,None,(0,0,255),4)

cv2.imshow('img2', img2)
cv2.waitKey()
cv2.destroyAllWindows()

10번 코드를 통해 방향은 항상 위쪽 방향으로 간주하라고 지정합니다. 결과는 아래와 같습니다.

Python과 OpenCV – 33 : SIFT(Scale-Invariant Feature Transform)을 이용한 이미지의 특징점 추출

이 글의 원문은 https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html 입니다.

이전 글에서는 이미지의 특징점을 Corner로 간주하였습니다. 이미지를 회전해도 귀퉁이(Corner)은 여전이 귀퉁이입니다. 그러나 만약 이미지의 크기를 늘렸을때는 어떨까요? 아래의 그림을 보면..

왼쪽의 이미지에서 초록색 사각형 안의 형상은 Corner입니다. 그러니 이 이미지를 확대하고 동일한 크기의 초록색 사각형 안의 형상은 더 이상 Corner라고 보기 어렵습니다. 즉, 이전 장에서 살펴본 이미지의 특징점으로써 Corner를 대상으로 했던 방법은 이미지의 확대에서 적용하기 어렵습니다. 이처럼 이미지의 회전뿐만 아니라 이미지의 크기가 변경될때에도 이미지의 특징점을 추출해 낼 수 있는 방법이 바로 SIFT 입니다.

SIFT는 다음처럼 총 4 단계의 절차를 통해 이미지의 특징점을 추출하고 추출한 특징점을 통해 매칭을 수행 합니다.

OpenCV는 SIFT를 구현하여 바로 활용할 수 있도록 함수를 제공하는데, 아래의 예제를 살펴보면..

import cv2
import numpy as np

filename = './data/home.jpg'
img = cv2.imread(filename)
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

sift = cv2.xfeatures2d.SIFT_create()
kp = sift.detect(gray,None)

img=cv2.drawKeypoints(gray,kp,None,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow('img', img)
cv2.waitKey()
cv2.destroyAllWindows()

위의 결과는 다음과 같습니다.

상당이 많은 특징점이 추출되었는데, 추출한 특징점은 11번의 코드에서 cv2.drawKeypoints 함수를 통해 그릴 수 있습니다. 그려진 특징점 각각에는 특징점의 위치, 특징점의 영향 범위에 대한 반경, 그리고 회전시 특징점을 식별할 수 있는 각도값으로써의 특징점 방향을 알 수 있습니다.

특징점으로써의 keypoint를 추출했다면, 이제 이 keypoint를 가지고 각 keypoint의 식별자(Descriptor)를 계산합니다. 2가지 방식이 있는데.. 먼저 앞의 예제처럼 먼저 키포인트를 얻고 난뒤, 이 키포인트를 가지고 식별자를 계산하는 sift.coomput() 함수를 사용하는 방법, 예를 들어 kp, des = sift.compute(gray, kp) 와 같이 실행할 수 있습니다. 그리고 앞선 예제처럼 keypoint를 먼저 추출하지 않고 keypoint의 계산과 동시에 기술자도 함께 계산할 수 있는 sift.detectAndConput() 함수가 있는데, 아래의 예처럼 함수를 호출할 수 있습니다.

sift = cv2.SIFT()
kp, des = sift.detectAndCompute(gray,None)

키포인트와 식별자를 얻었다면, 이 키포인트와 식별자를 조합하여 특징점을 사용하여 서로 다른 이미지 사이의 동일한 위치를 식별할 수 있습니다. 이는 다른 글에서 살펴 보겠습니다.