Python과 OpenCV – 36 : BRIEF (Binary Robust Independent Elementary Features)을 이용한 이미지의 특징점 추출

이 글의 원문은 https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_brief/py_brief.html 입니다.

지금까지 살펴본 SIFT나 SURF 등은 이미지의 특징점을 검출하기 위해 제법 많은 메모리를 사용하는데, 자원에 제약이 심한 임베디드 장비에서는 메모리를 적게 사용하는 특징점 검출 방법이 필요하며, 그 방법이 바로 BRIEF입니다.

BRIEF는 특징점에 대한 기술자(Descriptor)일 뿐, 특징점을 검출하는 방법은 제공하지 않는데.. 이를 위해 다른 특징점을 검출하는 SIFT나 SURF 등을 사용해야 합니다. BRIEF에 대해 설명하는 논문에서는 CenSurE를 추천하고 있습니다. OpenCV에서는 이를 STAR라고도 합니다. 여튼 CenSurE는 빠르며 다른 방법보다 BRIEF에 더 최적화되어 있다고 합니다.

OpenCV에서 제공하는 BRIEF의 예제를 살펴보면 다음과 같습니다.

import numpy as np
import cv2
from matplotlib import pyplot as plt

filename = './data/butterfly.jpg'
img = cv2.imread(filename, 0)

star = cv2.xfeatures2d.StarDetector_create()
brief = cv2.xfeatures2d.BriefDescriptorExtractor_create()

kp = star.detect(img,None)
kp, des = brief.compute(img, kp)

img2 = cv2.drawKeypoints(img, kp, None, (255,0,0))
cv2.imshow('img2', img2)
cv2.waitKey(0)
cv2.destroyAllWindows()

8번은 STAR 특징점 검출을 위한 객체를 생성합니다. 이렇게 생성된 STAR 검출기를 통해 특징점을 검출하고, 이 특징점을 이용해 9번 코드에서 생성한 BRIEF 객체를 통해 특징점의 기술자(Descriptor)를 계산하는 것입니다. 실행 결과는 다음과 같습니다.

Python과 OpenCV – 35 : FAST(Features from Accelerated Segment Test)을 이용한 이미지의 특징점 추출

이 글의 원문은 https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_fast/py_fast.html 입니다.

이미지에서 특징점을 추출해 내는 다양한 방법이 있지만, 그 속도면에서 아쉬움이 있었고 정확도를 희생하는 대신 빠른 속도로 특징점을 추출하는 방법으로 2006년에 FAST가 처음 제안되었습니다. 이 방법은 인공지능의 기계학습에서도 활용된다고 합니다. 이 방법은 특정 화소 인근의 화소값을 16개 뽑고 특정 화소의 화소값이 인근의 16개의 화소값에 임계치값(t)을 더한 값보다 크거나 임계치값을 뺀 값보다 작은 인근화소의 개수에 따라 특징점인지를 결정하는 매우 단순한 방식입니다. 여기에 더욱 속도를 향상시키기 위해 16개의 인근화소가 아닌 4개의 인근화소를 활용한다거나, 특징점이 비슷한 부분에서 너무 많이 추출되는 것을 방지하기 위해 억제(Non-maximal Suppression)하는 등이 절차가 적용되기도 합니다. 다른 방식에 비해 특징점 추출의 정확도를 떨어지지만 실시간에서 활용할 수 있는 속도를 제공하면서 어느 정도의 특징점 추출 방법으로 사용된다고 합니다.

OpneCV에서 이 FAST 특징점 추출에 대한 API 예제는 다음과 같습니다.

import numpy as np
import cv2
from matplotlib import pyplot as plt

filename = './data/butterfly.jpg'
img = cv2.imread(filename,0)

fast = cv2.FastFeatureDetector_create()

kp = fast.detect(img,None)
img2=cv2.drawKeypoints(img,kp,None)

print("Threshold: ", fast.getThreshold())
print("nonmaxSuppression: ", fast.getNonmaxSuppression())
print("neighborhood: ", fast.getType())
print("Total Keypoints with nonmaxSuppression: ", len(kp))

cv2.imshow('img2', img2)

cv2.waitKey()
cv2.destroyAllWindows()

실행결과는 아래와 같습니다.

콘솔에 출력된 결과는 아래와 같은데요.

Threshold:  10
nonmaxSuppression:  True
neighborhood:  2
Total Keypoints with nonmaxSuppression:  4992


인근 픽셀 화소값 비교를 위한 임계치 기본값은 10이고 비슷한 지점에서 너무 많은 특징점이 추출되는 것을 방지하기 위한 nonmaxSuppression가 True로 지정되어 있습니다. 시각적으로 이러한 특징점을 줄이기 위해 임계값을 변경하는 예제는 다음과 같습니다.

import numpy as np
import cv2
from matplotlib import pyplot as plt

filename = './data/butterfly.jpg'
img = cv2.imread(filename,0)

fast = cv2.FastFeatureDetector_create()

fast.setThreshold(150)
#fast.setNonmaxSuppression(False)

kp = fast.detect(img,None)
img2=cv2.drawKeypoints(img,kp,None)

print("Threshold: ", fast.getThreshold())
print("nonmaxSuppression: ", fast.getNonmaxSuppression())
print("neighborhood: ", fast.getType())
print("Total Keypoints with nonmaxSuppression: ", len(kp))

cv2.imshow('img2', img2)

kp = fast.detect(img,None)

cv2.waitKey()
cv2.destroyAllWindows()

결과는 다음과 같습니다.