아름다운 코드를 만나다!

ASP.NET의 코드 조각인데, 오늘 잔잔한 감동을 준 코드이다.

	TableCell td = new TableRow();
	td.Width = Unit.Pixel(300);

두번째 줄, td의 Width 속성값의 지정이 한번에 두가지 목적을 이뤄내고 있는게 아닌가! Table Cell의 폭(Width)에 대한 단위(Pixel Unit)와 실제값(300 Pixels). programming code는 절대로 Art 따위가 될 수 없다는게 나의 생각이지만.. 오늘 왠지 센치해져서 그런지… 요런 코드가 감동을 주네…. ㅜ_ㅜ

Windows Vista Architecture


클릭하여 확대해 보시길… 첨언하지면, 그림의 “Longhorn”은 잘못된 표기입니다. Longhorn은 Window Vista의 서버버전의 제품명으로 의미변경 되었다고합니다. 꽤 오래전에 인터넷 상에서 받아 보던 것으로 자료가 옛날것이긴 하지만, 명칭 이외의 부분에 대해서는 거의 틀린 부분이 없기 때문에 Vista의 전체적인 아키텍쳐 구성 요소가 어떻게 되는지를 살펴보기에 용이할 것 같습니다.http://www.gisdeveloper.co.kr/?p=209&preview=true

C++/CLI의 Dispose Pattern에 대한 고찰

리소스 해제를 위한 .NET 개발환경에서 제공하는 Dispose 패턴을 파악하기 위해 테스트용으로 적용할 클래스 정의는 다음과 같으며 총 세가지의 경우로 시험을 해보았다.

ref class T : public IDisposable {
public:
    T() {
        Console::WriteLine(L"T() invoked");
    }

    ~T() {
        Console::WriteLine(L"~T() invoked");
    }

    !T() {
        Console::WriteLine(L"!T() invoked");
    }
};

첫번째 시험 코드는 마치 지역변수처럼 할당하는 경우이다. 하지만 절대 지역 변수가 아니라는 점.. CLR Heap에 할당된다.

int main(array ^args)
{
    T a;
    return 0;
}

실행 결과는 다음과 같다. 지역변수처럼 변수의 유효 Scope를 벗어나는 순간 소멸자가 호출되었다. 실제 IL에 의해 구현된 내부 흐름은 소멸자 호출이 아니라 IDisposable::Dispose 매서드의 호출이다. 즉, 소멸자가 IDisposable::Dispose의 재구현이다. 또한 내부적으로 GC에 의해 호출되어져야했을 Finalize 매서드는 호출되지 않게 조치된다. C#과는 다르게 Finalize가 호출되지 않도록 자동화되었다는 점이 매우 특이하다.

T() invoked
~T() invoked

두번째 시험 코드는 C++에서는 포인터 개념으로 생각되는, 즉 C++/CLI는 Handle 개념으로 CLR의 Heap에 객체를 생성하였고 delete를 호출하지 않은 경우이다.

int main(array ^args)
{
    T ^a = gcnew T();
    return 0;
}

실행 결과는 다음과 같다. Finalize에 해당하는 !T()가 호출되었다는 점에 유의하자.

T() invoked
!T() invoked

세번째 시험 코드는 두번째와 다르게 delete 연산자를 적용해 주었다.

int main(array ^args)
{
    T ^a = gcnew T();
    delete a;
    return 0;
}

실행 결과는 다음과 같다. Finalize가 아닌 Dispose가 호출되었다.

T() invoked
~T() invoked

여기서 얻을 수 있는 가장 중요한 한가지 결론은 ~T()에 해당하는 Dispose()와 !T()에 해당하는 Finalize()의 코드는 절대로 같이 호출되지 않는다는 점이다. C++/CLI의 사용자가 .NET의 참조형 변수를 지역변수처럼 사용하든지, gcnew에 의해 할당하여 사용하든지.. 또한 사용한 후 delete를 했든지, 하지 않았든지 간에 ~T()와 !T() 둘중에 하나는 반드시 실행되다는 점이다. ~T()는 기존의 C++ 개념으로써 호출되며 !T()는 .NET의 GC에 의해 호출된다. 즉, 리소스 해제를 위한 코드는 ~T()와 !T()에 똑 같이 중복적으로 와야한다고 생각한다.

마우스를 이용한 View 회전

예전에 나이스가이님이 질문한 마우스를 이용해 현재 화면을 회전하면서 화면상의 물체를 살펴보는 방법에 대해 간단하게 설명해 보려한다. 전문용어(?)로는 Arcball 기법이라고 하는데, 이 Arcball을 구현하는 방법으로 직접 회전행렬을 계산해서 OpenGL의 glMultMatrix를 이용해 적용하는 방법 하나와 x와 y축에 대한 회전각도만을 계산해서 glRotatef를 이용해 적용하는 방법이 있다. 첫번째 방법은 NeHe의 강좌에 소개되어져있으나 URL은 http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=48 이다. 하지만 필자는 두번째 방법을 이용해 Arcball를 구현해 보려고 한다. 이유인 즉, 첫번째 방법은 OpenGL에서는 기본적으로 행렬 Type와 행렬간의 연산자 함수를 제공해주지 않으므로, 회전행렬을 직접 구하기 위한 행렬 Type을 개발자가 직접 정의해줘야 하고 행렬연산을 만들어줘야하는 번거로움이 있는 반면, 두번째 방법은 단지 x와 y축에 대한 회전각도 값을 실수형으로도 충분하기 때문이다.

글자만 있으면 썰렁하므로 별 의미도 없을법한 최종 결과 스크린샷은 아래와 같다.


화면상에 OpenGL의 GLUquadricObj을 이용하여 실린더를 6개를 그렸으며, 마우스를 이용하여 실린더 6개를 회전시키면서 살펴볼 수 있다. 보다 자세한 조작법은 마우스 오른쪽 버튼을 누른 상태에서 좌우로 마우스를 이동하면 Y축으로 회전되며 상하로 마우스를 이동하면 X축으로 회전한다. 이러한 사용자 액션과 반응을 염두해 두고 코드를 살펴보면 이해하는데 큰 도움이 될 것이다.

먼저 마우스 조작에 따른 Arcball 기법을 적용하기 이전에 화면상에 6개의 실린더를 그려주는 코드는 다음과 같다.

int DrawGLScene()
{
	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
	glLoadIdentity();
	glTranslatef(0.0f, 0.0f, -20.0f);

	bool bToggle = true;
	for(float offset=-5; offset<=5; offset+=2) {
		if(bToggle) glColor3f(0.6f, 0.6f, 1.0f);
		else glColor3f(1.0f, 0.6f, 0.6f);
		bToggle = !bToggle;

		glPushMatrix();
		glTranslatef(offset, 0.0f, 0.0f);
		glTranslatef(0.0f, 0.0f, -8.0f);
		gluCylinder(obj, 1.0f, 1.0f, 16.0f, 38, 4);
		glPopMatrix();
	}

	return TRUE;			
}

코드를 보고 이미 짐작하고 계실 분도 있겠지만, 이 코드는 NeHe의 강좌에서 제공하는 코드를 기본으로 하고 있다. 혹시 필요한 분들을 위해 전체코드를 다운로드 할 수 있도록 하겠다.

이제 위의 코드에서 마우스를 이용해 상하좌우로 회전시키면서 6개의 실린더를 구석구석 관찰하는 코드를 추가해보자.

먼저 마우스의 Drag를 통해 계산될 X축과 Y축에 대한 회전값을 위한 변수는 다음과 같다.

GLfloat xAngle;
GLfloat yAngle;
POINT mouseDownPt;

언급하지 않은 mouseDownPt 변수가 있는데, 이것은 마우스 버튼을 누른 좌표 지점을 저정하기 위한 변수이다. 마우스 버튼을 누른 지점과 마우스 버튼을 누른 상태에서 마우스를 이동하였을때 X축과 Y축으로 얼마만큼 이동되었는지를 계산하고 이 계산된 값을 이용해 xAngle와 yAngle값이 계산된다.

일단 xAngle와 yAngle가 계산되었다고 가정하고 최종적으로 회전을 적용시킨 코드는 가장 앞서 언급한 코드인 DrawGLScene 함수의 수정에 있다.

int DrawGLScene()
{
	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
	glLoadIdentity();							
	glTranslatef(0.0f, 0.0f, -20.0f);

	glRotatef(xAngle, 1.0f,0.0f,0.0f);
	glRotatef(yAngle, 0.0f,1.0f,0.0f);

	bool bToggle = true;
	for(float offset=-5; offset<=5; offset+=2) {
		.
		.
		.
	}

	return TRUE;			
}

새롭게 추가된 오렌지색 두줄의 코드가 전부이다. X축과 Y축의 회전에 맞게 glRotatef의 함수의 인자가 사용되었음을 주의해서 보기 바란다.

이제 마지막으로 마우스의 액션에 따른 실제 xAngle와 yAngle의 값을 계산하는 방법을 알아보도록하자. 이 계산 코드는 마우스 액션에 대한 Event에 위치하게 되는데, MouseDown, MouseMove, MouseUp 이벤트에 그 코드가 존재한다.

	case WM_LBUTTONDOWN:
	{
		mouseDownPt.x = GET_X_LPARAM(lParam);
		mouseDownPt.y = GET_Y_LPARAM(lParam);

		SetCapture(hWnd);

		return 0;
	}

위의 코드는 간단히 앞에서 정의한 mouseDownPt 변수에 가장 처음 마우스 버튼이 눌려진 위치를 저장하고 있으며 SetCapture  API를 호출해서 마우스가 Window를 벗어나도 지속적으로 Mouse Message를 받을수 있도록 하고 있다.

	case WM_MOUSEMOVE:
	{
		if(GetCapture() == hWnd) {
			int X = GET_X_LPARAM(lParam);
			int Y = GET_Y_LPARAM(lParam);

			xAngle += (Y-mouseDownPt.y) / 3.6;
			yAngle += (X-mouseDownPt.x) / 3.6;

	                InvalidateRect(hWnd, NULL, FALSE);

			mouseDownPt.x = X;
			mouseDownPt.y = Y;
		}

		return 0;
	}

위의 코드는 마우스를 이동했을때 호출되는 코드인데, GetCapture를 이용해서 현재 마우스 버튼이 눌러졌는지를 검사하고, 만약 마우스가 눌려진 상태에서 움직였다면 바로 여기서 xAngle와 yAngle를 계산한다. 계산공식을 눈여겨 보길 바란다. 3.6으로 나눠주고 있는데, 이것은 마우스를 1 픽셀 이동했을 경우 1/3.6 회전, 즉 0.27777778도 회전하게 되는데, 이 회전량이 사용자가 가장 자연스럽게 느껴지므로 3.6으로 나눴다. 좀더 회전정도를 강하게 하고 싶다면 이 값을 줄이면 회전이 팍팍!! 되도록 할 수 있다.

	case WM_LBUTTONUP:
	{
		ReleaseCapture();
		return 0;
	}

끝으로 위의 코드는 마우스 버튼을 눌러 이동하면서 물체를 이리저러 살펴보다가 마우스 버튼을 누름을 해제시킬때 발생하는 코드로써, ReleaseCapture API를 호출한다. ReleaseCapture는 SetCapture를 호출한 윈도우가 반드시 호출해줘야 하는 Couple API로써 SetCapture에 의한 마우스 메세지의 독점처리를 해제하는 함수이다.

이상으로 간단하게 마우스를 이용한 Arcball 기법에 대해 살펴보는 것을 마치도록 하며, 아래에 해당 소스를 링크한다.