원(Circle)을 그리라 했을 때, 나는 남들과 다른 원을 그리고 싶었다.

사용자가 원(Circle)을 그려달라고 했다. 다음처럼 그려주면 완벽하겠다.. 싶다.

하지만 나는 칼로 댄듯 그린 정확한 원 대신에 변곡을 넣어 다음과 같은 원을 먼저 그려주고 싶다.

대부분의 사용자는 원 모서리가 왜 이렇게 매끄럽지 못하냐고 하겠지. 그럼 난 그냥 넣었던 변곡에 대한 잡음을 빼면 그만이다. 내가 얻은건 사용자의 만족 뿐만 아니라 새로운 시도와 도전이다.

GLSL 퀵 레퍼런스

smoothstep의 보간식

아래의 a와 b는 동일한 값이다.

float f = uv.x;
float a = smoothstep(0., 1., f);
float b = f * f * (3. - 2. * f);

위의 보간식을 cubic Hermite curve(큐빅 헤르미트 곡선)라고 한다. 0~1 사이의 영역에서 시작과 끝을 좀더 편평하게 만들어주는 quintic interpolation cuver(퀸틱 보간 곡선)에 대한 코드는 다음과 같다.

float f = uv.x;
float b = f * f * f * (6. * f * f - 15. * f + 10.);

modelMatrix로 변환된 normal 얻기

varying vec3 vNormal;

...

vNormal = mat3(transpose(inverse(modelMatrix))) * normal;

프레그먼트 쉐이더에서는 받은 vNormal을 반드시 정규화(normalize)해야 한다.

3초 주기로 0 ~ 1 사이의 연속된 값 얻기

uniform float u_time; // 0, 1, 2, ...의 값이며 각각 0초, 1초, 2초, ...를 나타냄

...

float period = 3.; // 3초 주기
float t = mod(u_time, period) / period; // 0 ~ 1 사이의 연속된 값

// sin 함수에 3.1415를 곱하는 이유는 sin 함수의 한 주기가 360도이기 때문임
vec3 color = mix(vec3(0), vec3(1), abs(sin(3.1415 * t)));
// or
vec3 color = mix(vec3(0), vec3(1), sin(3.1415 * t) * .5 + .5); 

원하는 각도를 이루는 선

아래의 이미지는 45도를 이루는 선인데, 이처럼 원하는 각도를 이루는 선을 만들기 위한 코드이다.

uniform vec3 uResolution;
uniform float uTime;
uniform vec4 uMouse;

#define PI (3.141592)

void main() {
  vec2 st = gl_FragCoord.xy / uResolution.xy;
  st = (gl_FragCoord.xy - .5 * uResolution.xy) / uResolution.y;

  float w = fwidth(st.y);
  float a = (45.) * PI / 180.0;
  float d = dot(st, vec2(cos(a), sin(a)));
  d = smoothstep(-w, w, abs(d));

  gl_FragColor = vec4(vec3(1. - d), 1.);
}

다각형 그리기

uniform vec3 uResolution;
uniform float uTime;
uniform vec4 uMouse;

#define PI 3.14159265359
#define TWO_PI 6.28318530718

void main(){
  vec2 st = gl_FragCoord.xy/uResolution.xy * 2. - 1.; //-1-1
  st.x *= uResolution.x/uResolution.y;
  vec3 color = vec3(0.0);
  float d = 0.0;

  // Number of sides of your shape
  int N = 6;
  // int N = int(floor(mod(uTime * 10., 20.))) + 3;

  // Angle and radius from the current pixel
  float a = atan(st.x,st.y)+PI;
  float r = TWO_PI/float(N);

  // Shaping function that modulate the distance
  d = cos(floor(.5+a/r)*r-a)*length(st);

  // color = vec3(d); // Distance Field
  color = vec3(1.0-step(.5, d)); // Fill
  // color = vec3(step(.5,d) * step(d,.51)); // Only outline

  gl_FragColor = vec4(color,1.0);
}